中国教育在线
中国教育在线
《Science》刊发北航化学学院程群峰教授课题组最新成果
2021-10-08 10:27:00
北京航空航天大学
作者:

  2021年10月1日,《Science》以Report的形式发表了北京航空航天大学化学学院程群峰教授课题组在仿生高分子碳化钛纳米复合材料的最新研究成果“High-strength scalable MXene films through bridging-induced densification”。万思杰、李响、陈英为第一作者,程群峰教授为通讯作者,北京航空航天大学化学学院为第一完成单位。

  轻质高强高分子纳米复合材料是解决航空航天领域小型化、轻量化等瓶颈问题的重要材料,目前航空航天领域广泛使用碳纤维复合材料代替金属材料实现减重。孔隙是影响碳纤维复合材料性能的一个至关重要的因素,往往导致碳纤维复合材料在服役过程中发生灾难性失效,通过改善碳纤维与高分子基体界面浸润性和制造工艺等策略,降低孔隙率,同时利用无损检测方法,如Micro-CT和超声C扫描等,对碳纤维复合材料进行检测,达到国标和航标要求后方可安全使用。

  和碳纤维相比,新兴的石墨烯、MXene等二维纳米材料具有更加优异的力学和电学性能,是制备轻质高强高分子纳米复合材料的理想基元材料。但是在制备过程中也会产生很多孔隙,导致高分子纳米复合材料的性能远低于预期值。由于二维纳米材料本征的力学性能远高于高分子基体,在外力作用过程中使得高分子纳米复合材料的真实结构被破坏。采用常规表征方法,例如电子扫描显微镜等,得到的是破坏后的结构形貌,掩盖了高分子纳米复合材料的内部真实结构。而传统检测碳纤维复合材料孔隙率的方法(如micro-CT和超声C扫描)检测限很难达到纳米级,因此,高分子纳米复合材料的内部真实结构,尤其是孔隙,常常被忽视。给高分子纳米复合材料领域的基础和应用研究造成了巨大困扰,严重影响了高分子纳米复合材料的发展和实际应用。

  程群峰教授课题组长期从事高分子纳米复合材料的基础研究工作,在前期工作中,他们使用聚焦离子束(FIB)切割石墨烯复合材料薄膜断面,发现石墨烯复合材料薄膜内存在大量孔隙(Nat. Mater.2021, 20: 624–631),事实上,这种孔隙缺陷是高分子纳米复合材料存在的共性问题。鉴于此,他们在本工作中系统表征了碳化钛MXene高分子复合材料薄膜的三维孔隙结构(图1A-D),颠覆了高分子二维纳米复合材料的层层紧密堆积结构的传统认知。聚焦离子束扫描电镜(FIB-SEMT)和纳米X射线断层扫描(nano-CT)结果表明MXene二维纳米片之间存在大量孔隙,孔隙的体积分布大约为2 × 10-5~1.5 μm3,孔隙的体积分数约为15.4%(图1I)。

  基于此,他们发展了一种简单而有效的氢键和共价键有序交联致密化策略,其中柔性的氢键交联剂(羧甲基纤维素钠)可以填充和粘接MXene二维纳米片之间的大尺寸孔隙,而共价键交联剂(硼酸根离子)可以紧密桥联MXene二维纳米片,以消除小尺寸孔隙。相比于未交联的MXene薄膜,有序交联的MXene高分子复合材料薄膜(undefinedM)具有更少的孔隙和更致密的结构(图1E-H),其孔隙率降至5.35%(图1I)。

图1.未交联的MXene和undefinedM薄膜的结构对比。(A、E)未交联的MXene和undefinedM薄膜的结构模型,(B、F)FIB切割断面的SEM照片,(C、G)FIB/SEMT和(D、H)nano-CT三维重构的孔隙结构,标尺:2μm;(I)未交联的MXene和undefinedM薄膜的孔隙率。

  由于更致密的结构和更强的界面作用,undefinedM薄膜相比于未交联的MXene薄膜具有更高的拉伸强度、杨氏模量和韧性(图2A),其拉伸强度和韧性分别为583 MPa和15.9 MJ/m3,优于其他文献报道的MXene薄膜材料(图2B),在拉伸断裂后,该undefinedM薄膜的断面呈现明显的卷曲形貌(图2C)。此外,相比于未交联的MXene薄膜,该undefinedM薄膜具有更高的耐疲劳、抗氧化、抗应力松弛性能,同时,undefinedM薄膜具有优异的导电性能和电磁屏蔽效能。

图2.力学性能和断口形貌。(A)未交联的MXene、单一界面交联的MXene以及undefinedM薄膜的拉伸应力-应变曲线;(B)undefinedM薄膜和文献报道的MXene复合材料薄膜的拉伸强度、韧性以及电导率对比;(C)未交联的MXene、单一界面交联的MXene以及undefinedM薄膜断口形貌,标尺:低倍SEM照片5 μm,高倍SEM照片1 μm

  通过采用刮涂法代替真空抽滤法,他们进一步制备了大面积高性能undefinedM复合材料薄膜(图3A-D)。在潮湿空气中处理10天后,undefinedM复合材料薄膜相比于未交联的MXene薄膜具有更高的电磁屏蔽效能(图3E、F),显示其在可穿戴电子器件方面的巨大应用前景。

图3.刮涂法制备的大面积undefinedM薄膜的实物照片(A)和断面SEM照片(B),标尺:5 μm;(C)刮涂法制备的未交联MXene和undefinedM薄膜的拉伸应力-应变曲线;(D)刮涂法制备undefinedM薄膜和真空抽滤法制备undefinedM薄膜的强度、模量、韧性和电导率相对比例;(E)未交联MXene和undefinedM薄膜在潮湿空气中处理10天后的电磁屏蔽效能对比;(F)未交联MXene和undefinedM薄膜在潮湿空气中处理10天前后的平均电磁屏蔽系数对比。

  这项开创性研究成果对高分子纳米复合材料研究领域的发展具有里程碑的意义,其核心是发现并大幅降低了高分子纳米复合材料中长期被忽视的孔隙缺陷,颠覆了高分子二维纳米复合材料层层紧密堆积结构的传统认知,为其他二维纳米片的组装提供了新的启示。该工作也为将来从孔隙缺陷角度研究高分子纳米复合材料结构与性能的构效关系奠定了基础。

免责声明:

① 凡本站注明“稿件来源:中国教育在线”的所有文字、图片和音视频稿件,版权均属本网所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本站协议授权的媒体、网站,在下载使用时必须注明“稿件来源:中国教育在线”,违者本站将依法追究责任。

② 本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者在两周内速来电或来函联系。

相关新闻
北京航空航天大学 2022-10-14 13:28
北京航空航天大学 2022-09-16 17:25
北京航空航天大学 2022-09-16 16:51