中国教育在线 中国教育网 加入收藏 设为首页

2010年公务员考试行测备考:数量智力测验题

http://gongwuyuan.eol.cn  来源:  作者:新东方北斗星 贾柱保  2009-06-23    

  可能很多考生会觉得,公务员考试的题目都应该是极其严肃的,但事实上并不尽然。在行政职业能力测验的数学运算部分,有一部分题目略显与众不同,带有比较强的智力性和趣味性。这些题目有个共同的特点,在计算上通常并不复杂,但往往要求考生有比较严密的思维和比较灵活的想法,与传统的数学题目相比,更多的带有一种“脑筋急转弯”的性质。而且对于某些题目,仅仅具备数学知识还不够,需要考生掌握一定的生活相关常识才能够求解。通过对历年国家公务员考试真题的研究总结,专家发现,曾经有如下种类的智力型问题在公务员考试中反复涉及到。

  一、抽屉原理类

  “抽屉原理”也称“鸽巢原理”,最早由德国数学家狄利克雷提出,在组合数学中有非常重要的地位。如果用通俗一点的语言来描述,抽屉原理最常见的情形是:把多于n个的物体放到n个抽屉里,那么至少有一个抽屉里面要放有2个或2个以上的物体。在国家公务员考试中,抽屉原理类型的题目便曾经多次出现,其特征是,在题干中有“至少”和“保证”这两个词或类似的字样,比如:


  【例题1】2004年国家公务员考试B卷48题。

  有红、黄、蓝、白珠子各10粒,装在一只袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出几粒(    )

  A.3                 B.4                 C.5                 D.6

  【答案】:C。

  【解析】:从“至少”和“保证”两个词我们可以判断,这是一道典型的抽屉原理问题。解决此类问题,有一个总体上的原则,就是始终考虑最坏的情况。对于本题,最坏的情况就是每种颜色的珠子恰好各摸出一粒,没有任何两粒的颜色相同。这时只要再摸出一粒,不管是何种颜色,都能保证有两粒颜色相同的珠子了。对于任何的抽屉原理问题,实际上都是遵循这样一个大的原则来求解。

  【例题2】2007年国家公务员考试49题。

  从一副完整的扑克牌中至少抽出(    )张牌才能保证至少6张牌的花色相同。

  A.21                B.22                C.23                D.24

  【答案】:C。

  【解析】:本题也可以很轻易的判断出属于抽屉原理类,依照“最坏的情况”来考虑,应该是每种花色的牌恰好都抽出了5张。这里涉及到生活中的小常识,首先考生要知道一副扑克牌中有四种花色的牌,第二这道题有一个小小的陷阱,那就是一副完整的扑克牌中还有两张大小王。所以如果考虑不够全面的话,本题很可能得到21张的答案,实际上真正最坏的情况就是连大小王也摸到了,需要摸23张才能保证有6张牌花色相同。

  二、排列组合类

  提到排列组合问题,有一部分考生可能要开始头疼了,因为这在公务员考试中是一个“超纲”知识点。在前面的系列文章中我们曾经提到过,绝大部分数学题目的基本解题知识点都囊括在初二数学大纲中,但排列组合是高中数学才接触到的内容。尽管如此,却并不意味着这一类型的题目很难,因为对于排列数和组合数的复杂计算性质,在解题中基本上是用不到的。对于绝大多数的排列组合题目,只要掌握了乘法原理和加法原理两种简单的方法就能够解决,稍复杂的题目需要用到最基本的组合数。首先来交代一下,什么叫做乘法原理和加法原理。

  乘法原理,也叫分布计数原理,是指完成一件事需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×……×mn种不同的方法。

  加法原理,也叫分类计数原理,是指完成一件事,有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+……+mn种不同的方法。

  在具体题目中,到底应该应用乘法原理还是加法原理,关键是看完成整个事件是否有步骤之分。必须按照步骤先后顺序进行的,应适用乘法原理;各办法之间互斥,不用分成步骤完成的,应适用加法原理。对于某些题目,还可能需要将两种原理组合应用。


  【例题3】2004年国家公务员考试B类44题。

  把4个不同的球放入4个不同的盒子中,有多少种放法(    )

  A.24                B.4                 C.12                D.10

  【答案】:A。

  【解析】:因为球需要一个一个的放,只有将4个球全部放入盒子中才算完成,因此存在先后的步骤之分,应采用乘法原理。第一个球放到盒子中有4种不同的放法,第二个球只剩了3个盒子可以放,因而有3种放法,依此类推,放第三个球有2种放法,放第四个球只有1种放法,总的放法数目应该是各放法的乘积,即

  4×3×2×1=24种


  【例题4】2004年国家公务员考试A类47题。

  林辉在自助餐店就餐,他准备挑选三种肉类中的一种肉类,四种蔬菜中的二种不同蔬菜,以及四种点心中的一种点心。若不考虑食物的挑选次序,则他可以有多少不同的选择方法(    )

  A.4                 B.24                C.72                D.144

  【答案】:C。

  【解析】:首先明确,三种食物要依次拿取,并且全部拿取之后才能算作挑选完毕,因此在肉类、蔬菜、点心三种食物之间应该应用乘法原理,以“×”连接。接下来考查每种食物的选择方法,在三种肉类中挑选一种只有3种方法,四种点心中挑一种也只有4种方法,本题的关键在于蔬菜。挑选第一种蔬菜可以有4种方法,再挑选第二种蔬菜有3种方法,但挑选蔬菜的方法却不是4×3=12种,因为题目中有一句话,“不考虑食物的挑选次序”。打个比方,先挑选土豆后挑选胡萝卜,与先挑选胡萝卜后挑选土豆,在本题中视作同一种选择方法,也就是说挑选蔬菜的方法只有6种。因此总的选择方法是4×3×6=72种。

 

 

 




推荐给好友    我要收藏    我要纠错    我要打印
中国教育在线公务员APP

免责声明:

① 凡本站注明“稿件来源:中国教育在线”的所有文字、图片和音视频稿件,版权均属本网所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本站协议授权的媒体、网站,在下载使用时必须注明“稿件来源:中国教育在线”,违者本站将依法追究责任。

② 本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者在两周内速来电或来函联系。

内容推荐

公务员电子周刊

滚动新闻
eol.cn简介 | 联系方式 | 网站声明 | 京ICP证140769号 | 京ICP备12045350号 | 京公网安备 11010802020236号
版权所有 北京中教双元科技集团有限公司 EOL Corporation
Mail to: webmaster@eol.cn